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Abstract
The well known uncertainty product of communication theory for a signal in
the time domain and its Fourier transform in the frequency domain is studied
for a ‘composite signal’, i.e. a ‘pure’ signal to which a time-delayed replica is
added. This uncertainty product shows the appearance of local maxima and
minima as a function of the time delay, leading to the following conjecture:

the uncertainty product of a non-Gaussian composite signal can be
smaller than that of the ‘pure’ signal.

As an example this conjecture will be proven for the derivative of the Gaussian
signal and for the Cauchy distribution. The effect on the uncertainty product
of adding a delayed scaled replica of a signal to the original signal in the time
domain leads to an important possibility for interpretation in the study of the
reverberation phenomenon in echo-location signals of dolphins.

PACS numbers: 4120J, 4330, 0250

1. Introduction

Consider a possibly complex-valued signal s(t) ∈ L2(R); then its Fourier transform

s̃(f ) =
∫ ∞

−∞
exp (−2π jf t)s(t) dt

is again square integrable over the real axis, s̃(f ) ∈ L2(R), and we have Parseval’s equality

‖s‖2 =
∫ ∞

−∞
|s(t)|2 dt =

∫ ∞

−∞
|s̃(f )|2 df = ‖s̃‖2.

The functions |s(t)|2/ ∫ ∞
−∞ |s(t)|2 dt and |s̃(f )|2/ ∫ ∞

−∞ |s̃(f )|2 df can be seen as densities
in the time (respectively frequency) domain.

Introduce the mean time and frequency by

t =
∫ ∞
−∞ t |s(t)|2 dt∫ ∞
−∞ |s(t)|2 dt

f =
∫ ∞
−∞ f |s̃(f )|2 df∫ ∞
−∞ |s̃(f )|2 df

(1)

3 Corresponding author.

0305-4470/01/160231+08$30.00 © 2001 IOP Publishing Ltd Printed in the UK L231



L232 Letter to the Editor

gamma=0.2

gamma=0.1

gamma=0.5

0

1

2

3

UP

1 2 3 4 5
time delay

Figure 1. UP for the composite Gabor signal, ω = 7.

and the variances by

σ 2
t =

∫ ∞

−∞
(t − t)2|s(t)|2 dt σ 2

f =
∫ ∞

−∞
(f − f )2|s̃(f )|2 df. (2)

Relating time duration and frequency width as �t = 2πσt and �f = 2σf we then arrive
at the following uncertainty product (UP for short):

�t�f = 4πσtσf . (3)

The normalization used in (3) leads to the following well known inequality (reminiscent
of Heisenberg’s uncertainty principle from quantum mechanics) for the uncertainty product:

�t�f � 1 (4)

where the equality sign holds if and only if s(t) = c exp(−at2) (a > 0, c ∈ C \ {0}), the
Gaussian signal (or Gabor’s elementary signal), cf Gabor [1], Merzbacher [2].

The inequality in (4) appears to be of primary importance in the study of dolphin echo-
location signals. It is known today that dolphins possess a very sophisticated detection and
ranging system which is based on the use of very short-duration ultrasound pulses. It has been
shown that all of these signals share a remarkably small bandwidth given their time duration.
This property of maximum ‘concentration’ in time and frequency (�t�f � 1) justifies the
estimate or approximation of the signal by a parametric waveform model, the elementary Gabor
function. This estimate leads in many cases to a representation of the dolphin echo-location
signal by a main pulse and a time-delayed replica, the latter due to a reflection inside the
animal’s head [3].

In order to give an interpretation of the values (significantly greater than unity) found for
these signals, Kamminga and Cohen Stuart [3] studied the following Gabor model:

s(t) = exp (−α2
1 t

2) exp [j (ω0t + ϕ1)] + γ exp [−α2
2(t − τ)2] exp {j [ω(t − τ) + ϕ2)]}. (5)

Their plot (p 243, figure 6) shows an interesting phenomenon: if �t�f (UP) is plotted as
a function of the time delay τ , for fixed α1, α2, ω, ϕ1, ϕ2, γ then it has local maxima and
minima. However, of course, the actual value never drops below the lower bound of unity
given in (4), the value attained by a pure Gabor signal (5) with γ = 0 (cf figure 1 in this Letter,
plotting �t�f for (5) with α1 = α2 = 1, ϕ1 = ϕ2 = 0, ω = 7 (an arbitrary choice) and γ as
indicated).
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Figure 2. UP for a young Phocoena phocoena echo-location signal.

In figure 2, a plot is reproduced based on an actual recorded echo-location signal of
a young Harbour porpoise (Phocoena phocoena). The dominant frequency is 137 kHz,
γ = 0.46, τ = 18 ± 0.5 µs. This value of the time delay coincides amazingly well with
one of the local minima in the UP plot.

The plots given lead to two questions:

(i) Does this phenomenon also occur in other types of signal?
(ii) If so, is it possible to find a time delay such that the uncertainty product of the composite

signal is smaller than that of the pure signal?

Both questions will be answered in the affirmative for the signal that can be given by the
derivative of the Gaussian function and for the signal given by the Cauchy distribution. It is
conjectured that in general

the uncertainty product of a non-Gaussian composite signal can be smaller than that
of the ‘pure’ signal.

The outline of this Letter is as follows: first, in section 2, the effect of scaling on the
uncertainty product will be discussed and then in section 3 the behaviour mentioned in the
conjecture will be shown to be true for the derivative of the Gaussian signal, while in section 4
the same will be done for the Cauchy distribution. This is followed by a discussion of some
possible implications of this behaviour for the interpretation of models in signal analysis
(section 5). Then, in section 6 we reproduce some mathematical formulae to calculate the
required quantities and finally a selected list of references is given.

2. Theoretical remarks

Define the ‘moments’ of the densities by

µt,k =
∫ ∞

−∞
tk|s(t)|2 dt µf,k =

∫ ∞

−∞
f k|s̃(f )|2 df (k ∈ N). (6)
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The formulae in (2) can then be written as

σ 2
t = µt,2

µt,0
−

(
µt,1

µt,0

)2

σ 2
f = µf,2

µf,0
−

(
µf,1

µf,0

)2

. (7)

These formulae make it easy to prove the following theorem concerning scaling invariance.

Theorem 1. Let the Fourier pair s, s̃ have uncertainty product �t�f ; then the Fourier pair
s1, s̃1 with time domain representation s1(t) = s(λt), λ > 0, satisfies

�1t�1f = �t�f (8)

where the index indicates the values for the scaled functions.

Proof. For s1 we find

µ
(1)
t,k = µt,k/λ

k+1

and its Fourier transform s̃1(f ) = 1
λ
s̃(

f

λ
) satisfies

µ
(1)
f,k = λk−1µf,k.

Inserting these into (7) and (3) we arrive at (8). �

3. The derivative of the Gauss distribution

Consider the composite signal that is based on the derivative of a Gaussian function:

s(t) = te−t2
exp(jωt) + γ (t − τ) exp (−(t − τ)2) exp(jω(t − τ)) (9)

where ω, τ ∈ R and γ > 0.
Using the formulae from section 6 we calculate

µt,0 = 1

4

√
π

2

[
1 + 2γ (1 − τ 2) exp (−τ 2/2) cos (ωτ) + γ 2

]

µt,1 = 1

4

√
π

2

{
γ τ [(1 − τ 2) exp (−τ 2/2) cos (ωτ) + γ ]

}

µt,2 = 1

16

√
π

2

[
3 + 2γ (3 − τ 4) exp (−τ 2/2) cos (ωτ) + (3 + 4τ 2)γ 2

]
.

The Fourier transform is given by

s̃(f ) = −πj
√

π
[
1 + γ exp (−2π jτf )

] (
f − ω

2π

)
exp

{ − π2[f − ω/(2π)]2
}
. (10)

Again using the formulae from section 6 yields

µf,0 = 1

4

√
π

2

[
1 + 2γ (1 − τ 2) exp (−τ 2/2) cos (ωτ) + γ 2

]

µf,1 = 1

8π

√
π

2

{
ω + 2γ exp (−τ 2/2)[ω(1 − τ 2) cos (ωτ) − τ(3 − τ 2) sin (ωτ)] + ωγ 2

}

µf,2 = 1

16π2

√
π

2

(
3 + ω2 + 2γ exp (−τ 2/2){[(3 − 6τ 2 + τ 4) + ω2(1 − τ 2)] cos (ωτ)

−2ωτ(3 − τ 2) sin (ωτ)} + (3 + ω2)γ 2
)
.

From the explicit expressions given above the uncertainty product can be calculated.
Figure 3 gives the plot as a function of τ for the example with ω = 7 and the values of γ

indicated; the pure signal has value 3 (as it is obvious that we have an even function in τ , only
values τ � 0 have been used).
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Figure 3. UP for the composite Gauss-derivative signal, ω = 7.

4. The Cauchy distribution

We now turn to the composite signal based on a Cauchy-type signal

s(t) = exp (jωt)

1 + t2
+ γ

exp [jω(t − τ)]

1 + (t − τ)2
(11)

where ω, τ ∈ R and γ > 0. The moments are

µt,0 = π

2

[
1 +

8γ cos (ωτ)

τ 2 + 4
+ γ 2

]

µt,1 = π

2
γ τ

[
4 cos (ωτ)

τ 2 + 4
+ γ

]

µt,2 = π

2

[
1 + 4γ cos (ωτ)

τ 2 + 2

τ 2 + 4
+ (1 + τ 2)γ 2

]
.

Its Fourier transform is given by

s̃(f ) = π
[
1 + γ exp (−2π jτf )

]
exp

[ − 2π |f − ω/(2π)|] (12)

and the moments by

µf,0 = π

2

[
1 +

8γ cos (ωτ)

τ 2 + 4
+ γ 2

]

µf,1 = 1

4
ω(1 + γ 2) + 2γ

[
ω cos (ωτ)

τ 2 + 4
− 2τ sin (ωτ)

(τ 2 + 4)2

]

µf,2 = 1

2π

{
1

4
(1 + γ 2)

(
ω2 +

1

2

)
+ 2γ

[
ω2 cos (ωτ)

τ 2 + 4
− 4ωτ sin (ωτ)

(τ 2 + 4)2

+
2(4 − 3τ 2) cos (ωτ)

(τ 2 + 4)3

]}
.
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Figure 4. UP for the composite Cauchy signal, ω = 7.

From the explicit expressions given above the uncertainty product can be calculated.
Figure 4 gives the plot as a function of τ (as it is obvious that we have an even function in τ ,
only values τ � 0 have been used) for the example ω = 7 and the values of γ indicated; the
pure signal has value

√
2.

5. Conclusion and discussion

The effect on the uncertainty product of adding to a signal a delayed scaled replica of that
signal offers important possibilities for the interpretation of the echo-location sounds emitted
by dolphins, especially for dolphins emitting sounds of a polycyclic sonar character (containing
more than six complete cycles). Due to the ever-present reflection (originating inside the head
of the animal) which is added to the main signal, a UP-value and time delay are found which
are surprisingly close to the location of one of the minima in the theoretical plot. Here the
animal seems to turn the liability of an ever-persistent reverberation into an asset.

The experimental data imply that not only a main contribution to the signal exists, but also
a secondary one of a similar form. The peak values of the envelopes of the main (respectively
secondary) contribution were found to have a ratio roughly between 3 and 1.5 (cf [3] and [4]).

The examples show that the composite signal can have a smaller uncertainty product than
a pure signal of the same form. The data suggest that nature strives to obtain a minimal value
for the uncertainty product, even where it does not take the shape of a Gaussian signal, but that
of a species-dependent waveform having a time-delayed copy attached to it.

If we calculated the theoretically optimal time delay, and the value of γ and ω, and
compared this with the experimentally found distance between the main and secondary peaks,
we could give an indication of to what extent the theoretical model of composite signals leads
to a better understanding of the process of echo-location used by dolphins and the dependence
of the time delay on morphological features of the species.

6. Some formulae

For the sake of completeness the explicit values of integrals used to calculate the uncertainty
products in the sections 3 and 4 are given below (cf [5] and [6]).
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6.1. Moments

∫ ∞

−∞
t2k exp (−2t2) dt = �(k + 1/2)

2k+1/2
(k ∈ N)

∫ ∞

−∞
v2 exp (−2v2) cos (2τv) dv = 1

4

√
π

2
(1 − τ 2) exp (−τ 2/2)

∫ ∞

−∞
v4 exp (−2v2) cos (2τv) dv = 1

16

√
π

2
(3 − 6τ 2 + τ 4) exp (−τ 2/2)

∫ ∞

−∞
v3 exp (−2v2) sin (2τv) dv = 1

8

√
π

2
τ(3 − τ 2) exp (−τ 2/2)

∫ ∞

−∞

dt

(t2 + 1)2
=

∫ ∞

−∞

dt

((t − τ)2 + 1)2
= π

2∫ ∞

−∞

t dt

((t − τ)2 + 1)2
= πτ

2∫ ∞

−∞

t2 dt

(t2 + 1)2
= π

2∫ ∞

−∞

t2 dt

((t − τ)2 + 1)2
= (1 + τ 2)

π

2∫ ∞

−∞

dt

(t2 + 1)((t − τ)2 + 1)
= 2π

τ 2 + 4∫ ∞

−∞

t dt

(t2 + 1)((t − τ)2 + 1)
= πτ

τ 2 + 4∫ ∞

−∞

t2 dt

(t2 + 1)((t − τ)2 + 1)
= π

τ 2 + 2

τ 2 + 4∫ ∞

−∞
exp (−2|2πf − ω|) df = 1

2π∫ ∞

−∞
f exp (−2|2πf − ω|) df = ω

4π2

∫ ∞

−∞
f 2 exp (−2|2πf − ω|) df = ω2 + 1/2

8π3

∫ ∞

−∞
exp (−2|2πf − ω|) cos (2πτf ) df = 2 cos (ωτ)

π(τ 2 + 4)∫ ∞

−∞
f exp (−2|2πf − ω|) cos (2πτf ) df = 1

π2

[
ω cos (ωτ)

τ 2 + 4
− 2τ sin (ωτ)

(τ 2 + 4)2

]

∫ ∞

−∞
f 2 exp (−2|2πf − ω|) cos (2πτf ) df

= 1

2π3

[
ω2 cos (ωτ)

τ 2 + 4
− 4ωτ sin (ωτ)

(τ 2 + 4)2
+

2(4 − 3τ 2) cos (ωτ)

(τ 2 + 4)3

]
.
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6.2. Fourier transform formulae

s(t) = t exp (−t2)

s̃(f ) = −π
√

π jf exp (−π2f 2).

If {s(t), s̃(f )} is a Fourier pair, then also{
exp (jωt)s(t), s̃

(
f − ω

2π

)}

and

{s(t − τ), exp (−2π jτf )s̃(f )}.
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